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SültURY 

This paper 1B a systematic study of the mathematical 

structure underlying nearly perfect exchange markets which are 

spatially or temporally separated.    The principal questions 

Investigated are "What are equilibrium conditions for a set 

of exchange rates?11 and "How can arbitrage possibilities be 

discovered.   If they exist?"    The analysis Involves the combined 

use of an algebraic representation, which Is conducive to the 

derivation of qualitative features characterizing a multi- 

exchange market; and two linear prograamlng models, one of 

which has use In establishing a desirable set of equilibrium 

exchange rates, and the other of which has a special form 

permitting an efficient computational scheme for discovering 

arbitrage possibilities. 
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A NATHIMATICAL STUDY OF ARBITRAGE 

Jtremy J. Stone and Harvey M.   Wagner 

INTRODUCTION 

Arbitrage la an Important equilibrating mechanism in all 

nearly perfect exchange markets which are spatially or temporally 

separate^.    For example, a differential in foreign exchange rates 

which allows  the possibility of buying a money  in one market  and 

selling it at a net gain in another Is soon removed by the action 

of arbitragers;  the profitable transactions,   by creating addi- 

tional demand for one currency and supply of  the other, drive the 

foreign exchange rates back  to equilibrium.    Similar economic 

forces are present where trading takes place   in stocks and shares, 

bullion,  marine insurance,   and  commodities  for spot and future 

delivery.    TYils paper Is L systematic study of the mathematical 

structure underlying such markets.    We primarily addreas ourselves 

to the questions,  "What are equilibrium conditions for a set of 

exchange rates?'* and  "How can arbitrage possibilities be dis- 

covered,   if they exist?" 

Our analysis Involves the combined use of an algebraic rep 

sentation, in Section 1, which Is conducive to the derivation of 

qualitative features characterizing a mult 1—exchange market, and 

of two linear programming mode is. Sect ions 2 and )• One of these 

linear programming models has use in establishing a "best" set 

of equilibrium exchange rates (the definition of "best" Is given 

below)  while   the other has  a special form permitting an efficient 

•Some  of our results  are derivable   ^slng either one of the 
techniques  of analysis;   In  auch  cases,  we have  attempted  to employ 
the method   which appears most   Immediate. 



computational scheme  for discovering arbitrage transactions. 

We begin by considering only n—country currency exchange. 

Section 1.1 is devoted to situations of "pure exchange" markets 

or networks In which buying and selling rates between any two 

currencies are exact reclprocels  (thus ruling out two-currency 
• 

arbitrage) and do not differ In the associated two countries. 

Section   1.2 Is concerned with "general exchange networks,"   in 

which two-currency arbitrage may exist,  brokerage fees may be 

levied against  transactions, dealings  In commodities,  bullion, 

stocks,  etc. are permitted as exchange possibilities,  and ex- 

change rates may not exist explicitly for all pairs of currencies 

and  commodities. Sections  2 and 3 contain  the programming models 

which solve for equilibrium systems and arbltraging schemes, 

respectively. 

1.     AW AL08BRAIC RKPRISPTTATION OP EXCHAMOK TRANSACTIONS 

Definitions and rules of operation 

By a network we shall mean a set of countries or,  equivalent— 

ly,   currencies and a set of rates between pairs of countries.    The 

countries are thought of as nodes    and the  rates as arcs on s 

graph.     If a rate  is prescribed between countries    X.   and    X. 

the rate  between    X,    and    X.    will also  be prescribed;     in 

other words,  it  is assumed  that whenever a market exists  for the 

purchase of one currency  in exchange for another,  tnere  is 

♦For example,  we assume the exchange  rate of dollars  for 
pounds and of pounds for dollars are exact  reciprocals of each other, 
and  the dollar-to-pound rate is the same  in the United States as  in 
Britain. 

••Throughout the paper, we assume that no rate Is zero. 
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conconltantly a mark«t  for the opposite «xchanga.       If the»« 

rates  are always  reciprocal,  the network  Is called a pure ex- 

change network.    If rates are prescribed between all pairs of 

countries, the network  Is designated a complete network.     Networks 

which are not complete are referred to as  incomplet* networks. 

We use  the term "currency devaluation"  In a broad sense,  not 

distinguishing between devaluation and appreciation.    We shall 

always mean by devaluation the action of a country In changing 

Its rates by a constant  factor with respect to all other countries. 

We define    "^X"    to be  the rate of exchange of country        X^s 

currency for that of    X  's.    A series of  letters, e.g.  XpX^X^X^XcX^  , 

Is defined to be the product of the numbers    X2X7,  X-X*»   *_**' 

X^Xc,  Xc-X~.    Such a series of letters,  to be referred to aa a 

chain.   Is seen to represent the number of units of the  last  country's 

money which might be obtained by taking one unit of the  first 

country's money and sending  It through the  Indicated series of 

countries. In many cases we must discuss general kinds of 

chains,  and accordingly,   for transactions of secondary Interest 

In  the  computation,   we do not Indicate  the exact country  Involved 

but  simply number the  countries by a superscript.    For example, 
lo  3 4  S X,X,X X^XXX XX,     ,     Indlcstea money flowing from country    X,   to    X, g^ 

•Such a condition might not hold  for a financier  In  a  country 
Imposing tight exchange  control;   the  central bank might  be  willing 
to exchange domestic  currency for some  scarce currency but  unwilling 
to make  the opposite  transaction. 

••We assume  that  all  networks are  connected,   I.e.,   It   Is 
possible  to exchange  any  currency  for any  other currency  via some 
series of transactions 

•••A string of  letters may represent  either a number or a 
series  of countries.     Context will make  our usage  clear. 
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going through five other countries,   (not necessarily distinct), 

before returning to    X.   .    Chsins which have the property of 

the  above example #   that they begin and end with the  same  letter, 

are called cycles.    To arbitrage  in a currency network  is to per- 

form a series of exchange transactions resulting in no net loss 

of any currency and a net gain in some currency.    Examples of 

arbitrage might Involve a "cycle" of tranasctions such as trading 

dollars for pounds,  pounds for fra-cs#  francs for lire,   lire for 

dollars, or a simultaneous exchange  of lire for pounds,  pounds for 

francs, francs for lire, with profit  in lire which Is then trans- 

formed into dollars.    In particular,  a cycle permits arbitrage 

when its value  is greater than    1.    There can be no arbitrage 

in a network unless such a cycle exists.      A network is said to 

be   in equilibrium if  it ia not possible  to arbitrage  in that 

network. 
#• 

The  above definltlona are seen to define the following rule t 

^ x j A. X    ...A   A i A   ...A   At.   *   A. A      ...A  A* A.A       ...A  A». 

Our definition of a pure exchange network gives 

(2) XlXjXl"   1   for a11   1'   J 

•If a chain does not return to its point of origin and "buy" 
at least as much as it "•old" when it began, the arbitrager would 
be  in debt at that point. 

••A raised dot  between series of  letters  indicates   multiplication 
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1.1    COMPLiTK PURE EXCHANOB NETWORKS 

Most tl«ra«ntary txpotltions of arbitrage illuatrata such 

schamai in terms of two currency or three currency exchanges 

under (2).    Of course it is recognised that more complicated 

possibilities might be constructed.    In this section we  investigate 

the structural relations involved in n-country pure exchange net» 

works.    Our results will be segregated into those of interest to 

the arbitrager,  who is assumed to be unable as an individual to 

affect the exchange rates by his own transactions,  and those of 

interest to an international monetary conference, which is con- 

cerned with multi-lateral exchange  rate agreements. 

i.tl.l    Arbitrage.    We assert In the  following statement  that In 

a oosiplete pure exchange network the  value of any chain remains 

unaltered if a new currency is introduced within the chain as 

shown below. 

PR0P03IT10II 1:     In a complete pure exchange network, 

(5) X1X1...XPXJXI...X<Xk - X1X1...XPXJXIB   •  X^XjX1..^^    . 

Proof: 

A j A     • «  * A»    A * A     «»«A    A.      *    A * A     ••■A   A« A j A     • • « A    ^» 

■ *ixl---xP»A • Vjxl---X\ 

by aprly'ng In order,   (1<   (2)  and  then   (1)  three  times 
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Next we assert that exchanging currency  in  "different 

directions" along a ohsin in a pure exchange network determines 

reciprocal numbers. 

PROPOSITION 2!    In a pure exchange network, 

x^x2...^1^ • xJx
pxp"1...x2x1x1 - 1 

Proof:    This follows easily by applying (2),(1)  and  induction. 

As a corollary we have for the case    J • i that in a  pure 

exchange network the values derived from traveling in opposite 

directions around a cycle are reciprocal;  consequently, if it 

is unprofitable to conduct a given  "cycle" of exchange transactions 

in a pure exchange network/ it  is profitable to conduct the trans- 

actions in exactly the reverse order. 

The next proposition states the fundamental property of 

complete pure exchange networks.    If it is possible  to arbitrage 

in the network,then every currency wil)  be able to arbitrage 

in some three-way  (triangular)  transaction.    Contrapositively, 

if triangular arbitrage does not exist for any given country X 

no arbitrage can exist in the entire network. 

PROPOSITION 31    Let XQ be any designated country in a complete 

pure exchange network,    S.    S    is not in equilibrium if    and 

only if it  is possible to arbitrage from    XQ    through two other 

countries   (i.e.    XQX.X.XQ > 1  for some 1,   J)   . 
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Froof 1 nie condition It obviously sufficient. To show that It 

la necess&ry asnune that arbitrage Is poatlble and thus that 

X X. X X^X ...XPX > 1 for the Indicated oountrlee. By application 

of (l), (2) and Proposition 1 we shall systematically turn the 

cycle into a series of triangular (4 letter) cycles from XQ. 

nils Is done in such a «ay that the product of the values of 

these cycles will be equal to the value of the original cycle 

and hence greater than one. Since a product of non-negative 

numbers can not be greater than one unless at least one of the 

factors is greater than one, we shall conclude that X0 can 

arbitrage in at least one triangle. The construction follows. 

The reader may verify that at each step cf the construction the 

value of the cycle or product of values of the cycles remains 

fixed. 

Cafee 1.  a 4 0. Construct 

1        Xpk xOXaXbXJCj,X"  •••x*/x-x 

using (l) and (2).    Then consider the third and fourth letters 

of the cycle,    X^    and    X    ,  and act aa follows: 

A.    b 4» 0»    c I ()•    Construct 

ualng Proposition  1. 
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B.    b - 0,  c + 0.    Conitruet 

^Wx>      VoXdX     •••3rXaX0    - X0 XcXdX    ...X X^ 

uilng (1) and (2). 

C.    b | 0, o ■ 0* Com true t 

WJo   W*1 '^Vb 

uiinf (1). 

Cits« 2.    a - 0.    In this ease the eyole  Is of the font 

VbXeV* •••x ^ 

Perform the steps k, B,  and C letting X and X. of this 

oyole correspond respectively to the countries X. and X of 

the other case. 

Having performed these steps on the original cycle we 

now continue this process working from left to right on the 

remaining cycle If It has more than four letters, nils cycle 

will satisfy case 2. We preserve untouched the four letter 

cycles produced (in alternatives A or C). Since three letter 

cycles correspond to factors of 1 «hlch can be Ignored, and 

because cycles (which are the only entitles turned up by the 

algorithm) must have at least three letters, this method must 

result In a set of cycles of four letters or more. 
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Howvvtr txoept possibly for the original tpplloatlon of the 

alforltha,  tho sis« of the oyol« bolng dealt with mist decreasa 

by at Itast ana lattar.    Hanoa tho sathod autt UrmlnaU In a sat 

of four lottor oyclas.    Thli,  taken with the Introductory argu- 

ment, establishes the result. 

Fig.  1  Illustrates the decomposition In the proof for a 

possible 7 country cycle. 

CYCLE 

DECOMPOSITION 

*.x* 

rig. i 

>• X5 
i zx, 

As a corollary  to this result we have 

Corollary 1.    Given  a complete pure exchange network with n 

countries,  it  is sufficient to examine     ^"^ j*       *    cycles  to 

determine whether or not arbitrage exists anywhere  in  the  system. 

(This represents  the number of  triangles  from one country.) 
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On« might ask whtther it is possible to «stsbllsh dsfinitsly 

ths tzistenoe of «quillbriun by testing less than (iv-l)(n-^)/2 

cycles. The next result show that this Is not possible, no matter 

how complex the cycles considered. 

PROPOSITION 4i  Given s complete pure exchange network with n 

countries, it is not possible to determinj thst the system is in 

equilibrium by examining fewer than ^r>~ i»   '  cycles. 

Proofi Order the triangles through some fixed country XQ snd 

let y.  be the value of the ith triangle in some fixed direction, 

1 • 1,2,..., tr>"1)Lrv""2l  . we first show that the /y.] are 

Independent (i.e. there is a network corresponding to any positive 

set [yA  )  for let <y.    > be any desired positive set of vslues. 

Let XQX,  take on any fixed positive values. Define 

X11
X12 " 

yl  * Xi1 ^ * Vig 

where X1  and X.  are the countries Involved in the ith 
n 12 

triangle.    Since  the rate    X.   X        appears in only the ith 
11  12 

triangle this uniquely defines  It  and we can easily see that 

It gives the required value for    y1       .    Hence for any set of 

there is a positive  values   Jy^    1 -  1,2,...,   l^1)!"-^) 

corresponding network.    We shall show that for any set of cycles 

Ck   . k - 1,2,....^ , k0 < . [n-l)^)     (and corresponding values) 
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ther«  is a network Mhloh  is not  in equilibrium but which has 

rates such that  the given cycles have the given values.    Hence 

th* cycles could not have determined  that the given network 

was in equilibrium.    Ely Proposition  3 each given cycle can be 

replaced by a set of triangular cycles with origin XQ,  the pro- 

duct of which gives the value of the original cycle which we may 

take to be one.       Hence the given cycles correspond to the equa- 

tions 

l^l^l 
n       y* lk - i   * - 1.2....,^ 

i - 1        1 ü 

where the    ai.   are  integral exponents.    Since    k0 <  \n~lHn^M^ 

it is evident that we may solve  for    k0 of the    y.     in terms of 
'n—1) fn—2^ the other    • ■       L*       f    - krt variables.    Hence  at  least one of 

2        0 

the y.  may be chosen not to te equal to one. Allowing the 

others to be determined or chosen in any fashion consistent with 

the equations and the general positivity requirementf we detem.lne 

a set of <y*\.    By the independence argument there exists a network 

with these y. .  By the construction of the |y.  the given cycles 
L   J 

will have value one in this network.  But since at least one 

triangle arbitrages in the network, it is not in equilibrium. 

Hence that the C. , k - l,2,...,k0 have value one is not sufficient 

to determine that the network is in equillbriuin and the result is 

established. 

•If the cycle did not ha\e value one, no network containing 
that cycle could be determined to be in equilibrium.  Any country 
in the cycle could arbitrage by sending its currency through the 
cycle in the direction having its value greater than one (see 

Proposition 2.) 
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1.1.2 Hulti—Lattral Adjustmenta  Up until now, «ft havt oor>- 

•lder«d relations that ascartain tht exlatance of arbitraga 

posaibilitioB in a complata pure exchange network; the reaulte 

involved determing the values of a set of chains. Here we shift 

attention to the component rates themselves. We establish con- 

ditions which must exist among the exchange rates in order for 

us to construct an equilibrium system, or to restore a system 

to equilibrium) also we delineate the effects of exchange rate 

alterations and devaluations upon a pure exchange system. 

PROPOSITION 31 Oiven an Incomplete pure exchange network in 

equilibrium, S, which contains all n countries, then» is a unique 

complete pure exchange network • , in equilibrium which contains 

it. 

Prooft Assume 3LX, is not defined in S. Since, by hypothesis, 

all countries are part of S. there exists a path X1X ..«X^X. 

In S. Define X^. • t^Jr t, ^X.   .    This  definition Is unique. 

For assume that another path exists X1X
P"*' .. .X^^X, In S. 

By assumption S is consistent, so 

x1x
1...xpxJx

p'Hl...xP4lx1 - x1x
1...xpxJ • X^^.-.X*^ - 1. 

By propoeltlon 2 

x^.-.x^Xj • XjjF**...iF*\ - i    \ 
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and alnce no rates are zero we have 

X^1 ... X^Xj - X^1 ... X^j . 

The network S with thia rate adjoined la again conalatent, for 

if arbitrage Involving the new arc Is possible, i.e., 

X^1 ... x8x1xjx
8+1 ... X8""^ > 1, 

then 

X^1 ... X8X1X
1  .. XPXjX841 ..  x8^txm > 1 

la eaally aeen to hold.  But alnce thia cycle involves only 

r.rcs in S, we nave achieved a contradiction.  Thus the assign— 

ing of ratea can be carried out in such a way as to preserve 

consistency, and hence the subnetwork can be expanded into 

a conaistent one.  It is unique by construction, which gives 

the result. 

As simple corollaries we have 

Corollary 1:  The n—1 rates between a currency and all other 

currencies in a pure exchange network determine a unique 

equilibrium in the complete network. 
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Corollary 2:    A  chain of  llnko  through all  nodes,  of  the  form 

X-, XoX, . . .X_, ^ ;  In a pure exchange network determine» a unique 

equilibrium  In the complete  network. 

In our dlscuision to  this point,  we have made no aaiumptlon 

about  the   Inetltutlonal  aspects of currency market»;  we have 

assumed only  that  a pare exchange network exists.    The following 

theorems  are directed at  the  Implications of  currency devaluation 

and  alteration of  rates.     Consequently   It  Is  helpful  to  construct 

a hypothetical  Institutional  framework  In which such changes can 

be made.     We suppose  that each currency Is managed by a central 

authority  In  the corresponding country.    The  authority has discre- 

tionary power to set exchange  rates;  but,  since  throughout this 

section  we  preserve   (2),   any direct alteration  In  the  rate X.X,   by X. 

is automatically agreed to by X.  In that X* makes the reciprocal 

change  In   X.X. . 

•TYils  result   implies  an  alternative  to  Proposition  },  vlx.. 
In  a complete pure exchange  network,  S,  consisting of n countries, 
8 is not  In equilibrium if and only if one of  the following equalities 
does  not  hold: 

x,x, - X^X i~3    n^rs 

1X4 X^X,,   • X^XgX^X^ 

^^i " X1X2X3* "^n 
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We assert a well known statement that an across—the—board 

percentage change in any one country's rates (and the correspond- 

ing reciprocal change in the cross rates) does not create arbitrage 

possibilities. 

PROPOSITIOW 6»  If a currency is devalued, in a network in equilib- 

rium, the network remains in equilibria^. 

Proof:  Let XQ be the devaluer. Let a be the factor of devaluation. 

By Proposition 3 it is sufficient to verify that every triangle 

through XQ bas value 1.  This verification is left to the reader. 

Suppose that in p countries, the monetary authorities decide 

to change several or all of their exchange rates with other coun- 

tries) what is the effect on the systemt We first prove 

PR0P03ITI0W 7:  Let 3 be a complete network in equilibrium. 

Let X,, Xj-« tX^ , p < n,countries devalue thei. currency.  Then 

the resulting network S  is Independent of the order in which 

devaluation takes place. 

Proof»  Let primes Indicate the new rates (in S ) and consider 

a country X , s > p,which Is not devaluing.  Then defining k.  by 

X8Xi * kiXBXi 

and conai^ering 

1 - 1,2, .. .p 

1 • p-fl,. . ,n 1 4 » 

we see that the rates attached to X are defined Independently 
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of the order of devaluation.    Since by Corollary 1 of Proposition 5 

these rates uniquely determine    S  ,    S    is Independent of the 

order of devaluation. 

We prove a statement which contains  as a special case a 

converse of Proposition 6. 

PROPOSITIQW 8;    Let    S    be s complete network In equilibrium. 

Let    S    be a complete network  In equilibrium which arises  from 

S through the alteration of exchange  rates by a group of countriest 

i 
say    X,,  JU,   ..., X   ,      p < n.    Then    S    Is equivalent to a sys- 

tem resulting from a uniquely determined devaluation of each of 

the    p    currencies. 

Proof t    Let primes  Indicate the new rates   (In S   ) and,  considering 

a currency    X , s > p, which is not In the group, define the    k. 

by  the equations 

X8X1 " klXsXl 1 "  l»2,...,p 

Evidently we also have 

XsXl * XsXl 1 * p"'1'  5H,2' ••'" i r s 

A complete network with these new rates for X  could be achieved 

by having each currency X., 1 ■ l,2,...,py devalued by a factor 

l/k.  , 1 • l#2,...,p  .  By Proposition b svch a sequence of 
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d^valuatlone would preserve equilibrium.     By Corollary  1 of fro- 

poaitlon 3 there  !•  a unique complete network In equilibrium with 

these rates.    Henoe  this network must  be S  ,  and S    has  been 

attained by devaluing each of the    p    currencies.    The devaluation 

required of each currency  Is uniquely determined by k.   .    This 

completes the proof. 

A corollary Is  that  If a single  country alters  Its exchange 

rates by any process other than devaluation,  arbitrage possibili- 

ties arise. 

Corollary  1:    T^e only unilateral  action  which preserves  equilib- 

rium  Is devaluation. 

Turthermore  by repeating  the proof of  Proposition  d  as   If    X_ 

wished  to change    p    of  Its  rates we  have 

Corollary 2:     Let     S     be  a complete  network  In equilibrium  and 

let     X_     change only     p     of  Its  rates,   p  < n.    Then  to   reach   the 

new equilibrium determined  by  this  action   requires  the  equivalent 

of  a devaluation of    p    currencies.    The  devaluations  are  uniquely 

determined. 

Corollary  3:     Let    S,   3     be complete  networks  In equilibrium. 

TVien    S    may  be   transformed  Into    S       by  no more  than     n—1 

devaluations. 

We  turn   from discussing  rate  alterations  which  preserve 

equilibrium  to  the  problem of establishing equilibrium   In  a given 

syst«e by   adjusting  as  few rates  as  possible.    Such a  question 
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tnlght arise  If there existed an  international monetary conference 

which desired a good way of altering the current rates to remove 

the eitant arbitrage possibilities.      We start by examining a 

case  in which only relatively few rates need to be changed;  this 

ease  Ir.oludes  the event in which only one rate  is  improperly set 

(i.e.,  in which a single alteration establishes equilibrium). 

We define a complete network to be  in near-equilibrium if 

it can be changed to an equilibrium network by altering fewer 

than  (n-l)/2 rates.    We demonstrate the relationship between a 

network in near-equilibriuci and  the triangular arbitrage  trana- 

actions existing in the system. 

PR0P0S1TI0M 9»    A necessary and  sufficient condition that a 

complete network,  S,   be in near-equllibrlur la that 

M(J)  - rain H(i)  <  (n-l)/2     , 
1 

where N(i) is the number of triangular arbitrage possibilities 

from X^ 

Proof: Assume N(J) < ^     Let ^i^,^,*] permit arbitrage. 
ii 

Define    X^X^ •    X^X.   •  X.X^    to be  the new rate replacing    IX    . 

Repeating this procedure for each  instance of triangular arbitrage 

and  leaving the rest of the network untouched,  we create a new 

♦The reader should note that  in choosing among types of 
possible alterations which would restore a system to equilibrium, 
one would not necessarily select  that  aet which requires  the least 
number of altered  rates,    A full discussion of other alternatives 
is  beyond the scope of this paper. 
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■yttem 8' in which X, cannot arbitrage In any triangle. By 

Proposition ), S it in equilibrium. Sinoe only N(J) arc» were 

changed, S was in near-equlllbrlun» and the condition it suf- 

ficient. Now assume that the condition is not satisfied. Then 

N(i) 2 "?    for ,L11
 ^ Bn<^  b«c*aBe the equilibrium, S, , 

determined by the ith country's rates (Proposition 5, Corollary 1), 

can be achieved only by the construction above (changing a specific 

rate in each of N(i) triangles), 8. cannot be achieved by changing 

fewer than N(l) 2 "9— rates.  Any other attempt to achieve 

equilibrium must change st least one arc sttached to every ooun— 

rv-1 
try, or at least n-1 arcs. Sinoe rv-1 > -m— for all positive 

n, S could not have been in near-equilibrium. This completes 

the proof. 

We next  show the uniqueness  of the equilibrium reached by 

changing less  than     (n-l)/2 rates.    We define    R(S,T), where 

8    and    T    are  complete networks,   to be the number of arcs which 

are not the same in the two networks.    R    Is a metric.    In this 

case the triangle  inequality states that it requires at  least 

as many arc changes to transform network    S,     to    S^    and then 

to    S,    as  it  would  to transform    S,     to    S,   . 

PROPOSITION 10»     If    S    Is in neaixqulllbrlum,  there is a unique 

equilibrium situation    S    such that    R(S#S  )  < —n— 

Proof t    By the previous assertion we know that an    S.    exists 

with the property in question.    Assume that a distlnot    equilibrium 

situation 3'   has the same property.     Since the n-1   rates of 

^   uniquely delennlnc an equilibrium  situation  (Proposition  5* 
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Corollary 1) it mutt b« that XJX1 4 X.^ for aon« 1, whtr« 

indloatas the arot in   S  ,    By  Corollary 2 of Proposition 8, 

tha numbar of values, 1, for which the inequality holds indicates 
i 

the number of devaluations that must occur to take S into 8 . 

Kach devaluation changes «v-l arcs and no set of them can change 
i 

fewer than n>l . Hence 11(8**8 ) £ n-1  . However since both 

Sj and 8  have the property that their "distance9 from 8 is 

less than ^Z , we conclude by the triangle inequality, 

RISES') £ 8(8^8) 4 «(8,8') < 2ji- ♦ Uji- . n-1 

Hence it la a contradiction to say that 8    and 8 are distinct, 

and the proposition is proved. 

Propositions    9 snd 10 enable one to identify the near- 

equilibrium networks and to uae the constructive method in 

Proposition    9 with the certainty that it achieves equilibrium 

while changing the fewest number of rates. 

These results permit one  to recognise and repair the special 

case in which a previous equilibrium haa been destroyed by a sin- 

gle incorrectly set rate  (for n > 3).    If the network is not in 

equilibrium and does not satisfy the condition of the previous 

proposition    then the determination of an equilibrium system 

requiring the  least number of altered rates is,  in general, a 

difficult problem, and Me defer a aolution until Section 2. 
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1.2    OENSRAL RXCHANOS NETWORKS 

In this  8«otlon w« drop the assumption that the network is 

a complete pure exchange currency network and consider general 

networks.     In particular we remove  (2)   (and thereby the general 

validity of Proposition 2).    We permit both X^.X^  > 1  and 

X.X.X.   < 1;   the former possibility  immediately leads to arbitrage, 

and the latter possibility corresponds to admitting drains which 

might include brokerage charges,   currency shipment  charges,  and 

insurance (insofar as these can be represented as a percentage 

of the amount  of currency exchanged) .    Thus we permit  the actual 

or quoted rate to be diminished to reflect the existence of 

ad valorem transaction costs.     These deviations  from  (2)  are 

usually of small magnitude and for that reason,   several  of the 

previous results,   e.g.,   those concerning devaluation,   retain a 

certain validity,   although in a strict sense the assertions can 

no longer be proved.     Por the arbitrager,  however,   tiny deviations 

from the pure exchange case are very important since,   in reality, 

his rate of profit  is itself usually small;  we postpone until 

Sections  2 and  3 techniques  of analysia open to the arbitrager 

in the general  network.     The crucial   implication of relaxing 

(2)   is  that  Proposition 3 fails  to hold.     We also  relax the 

assumption that  the network need be  complete.     In  the general 

network,   the analogue of Proposition 3 is Proposition J>'. 

PROPQS IT ION 3' ;     (i)   Let  XQ be any country In a complete exchange 

network,  S,  which  satisfies  X^X^ - 1  for all   i.     Then it  is 
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posalblt to arbitrage in    S if and only if it is potsibl« to 

arbitrage from    XQ    through two other countriea   (i.e.    ZQXJX^XQ > 1 

for aorae   (J#k)) . 

(ii)     In a general network,   if it ia poaaible to arbitrage, 

then it ia poaaible to arbitrage  in a aeriea of exchangee which 

involvea no more  than one buying and one Bailing tranaaction for 

each country. 

Aa the  reader may verify,   the hypotheaea  in   (i)   are the only 

ocnditiona neceaaary to apply  the  conatruction of Propoaition 3> 

The reault  is applicable  if an  arbitrager facea no tranaaction 

charges when dealing in hia domeatic currency;  the effective 

charges would then have the neoeasary property. 

The assertion of  (ii)  follows  from the fact  that, even in 

a general exchange network,  a cycle that paaaes  through a country 

twice can be  presented as two cyclea whoae product has the original 

cycled value.    Thua, applying   (1)   twice, we have 

JLj X    ...AXjX ••.XA«X • • • A   Aj    * 

xx^.-xPxj . XJX^.J^XJ .xjx
<^1...xnx1 - 

AjX    « * .X   X.X •••XXj X j A > ••A   A * 

If the original oycle arbitraged,  one of the derived onea rnuat. 

The propoaition  followa by repeating the proceas  aa many timea 

aa ia necessary. 
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The reader should observe  that  sine« the network  is connected, 

if profits can be made by arbitraging, they can be exchanged into 

any other currency. 

Proposition  if remains true  if  the word  "pure"  is deleted, 

but it  loses much of its significance unless a situation like 

the one hypothesised in   (i)  above exists.    Proposition 3 and 

its corollaries  remain correct  if the words  "pure"  and  "unique" 

are deleted.     Propositions o and 7 hold    but Proposition 8 and 

its three corollaries do not;  however if the deviations from 

pure exchange are small   (as they usually are)  and  if  the multi- 

lateral rate alterations contemplated are  large   (as they usually 

are)  the results  are essentially correct.    Propositions 9 and 10 

are no longer true and their significance remains unimpaired only 

in the case  that  rates are so badly set that arbitrage  is of a 

different order of magnitude  from that of the deviations from 

pure exchange   (e.g.  if    rates are  actually set  at a distinctly 

incorrect  level);  as we show in Section 2,  the problem with 

which these  propositions are  concerned is completely  solved by 

a linear programming formulation. 

1.2.1    Wulti—Bloc Kiohange.    An  IncompAete network of particular 

interest  is one   in which  the  n  countries are divided  into    m 

currency blocs,   each of which has  a single distinguished currency. 

Within each  bloc  a complete  network  exists  and  the network be- 

tween  the distinguished currencies   is complete;   but  to exchange 

•We assume,   as before,   that  if    X.   changes his  rate    X. X. 
to l^X^ , then    X1    changes    X1Xk    to    1 X1Xk 
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* minor currency In one bloo for t minor currency In another 

bloc.   It  It ncccsiary to go through Intermediary exchangea with 

the distinguished currene'es.     Such a network  appears In Fig.  2 

Y Y 'l '2 

Xl 

r- 

/   \ 

h 

i / 
h *-      '>zi 

\ 

^z. / 

Fig. 2 

The "capital" countries her« are X, Y, Z, and V.  A typical 

cycle might appear at below: 

X1X
1...XPrfY1. .Y<,Y2Z1...ZrZWW1...WsWIX1 

By suoceeaive application of   (1)  the reader can verify that 

the following product of cycles  can be  substituted  for Iti 

:1X1...XPXX1   • YY^.sY^   •  ZZ1...!1^   •  ww1.. Vw  • XYZWX 
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If tht  orlglntl cycle had a  value greater than one we again  rea- 

son  that one  of the above  cycles must.    Hence   It  Is sufficient 

(and obviously necessary)   to examine,   for the possibility of 

arbitrage,  each of the complete networks which arises by con- 

sidering a  single bloc plus  the complete  network among the 

"capitals." 

1.2.2    Commodity-Currency Sxchange,    ?lnslly we consider networks 

In which certain nodes correspond to currencies while others 

correspond  to commodities  at  various  locations   In  time or space. 

At each country, there are defined exchange rates for commodities 

In term» of  thst country's  currency, and an exchange rate  for a 

type of commodity In one  country In terms of  the  same type of 

commodity In another country   (such a rate  takes   Into account 

ad valorem shipping or holding charges  levied  In  the transferal 

of a commodity from one  country to another).    We  are  Interested 

In determining^under various  circumstances,   the number of  trans- 

actions  necessary to permit  arbitrage  when dealing  In a commodity. 

Because  we are primarily  Interested  In commodity arbitrage,  we 

confine  our  attention   to   the  case  In  which   It   Is   Impossible   to 

arbitrage   In money  alone   (i.e.   the sub—network  composed  of currency 

noden   Is   In  equllllrlum) .    Since  the  costs of  shipping commodities 

are so much   larger than  the  cost   attached  to money    transactions, 

we  first  consider the  situation  where  the  currency sub-network 

Is a pure  exchange network. 
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PROP03ITIOW 11.     In  a  combination  currency—commodity  network 

for  which the currency  sub—network  Is  a complete pure—exchange 

network,   if an arbitrage possibility utilizing commodity  trans- 

actions exists,   then only on« commodity shlpoMnt need be msude. 

Proof:    Let X.   stand for the currency of country 1 and Yi 

and  Z^  for particular comodities purchasable in country i.     Then, 

should the cycle shown  In Fig. 3 permit arbitrage, by utilising 

the  pure  exchange of currenc,,,  we  could  substitute  for  it  the 

fwo  cycles    ^i^o^o^^S^l   *   ^l^^^U^i^S^l     wh08e pro^ot must 

again  be greater than one.     Hence one of  these must permit 

arbitrage, while each  involves only one commodity. 

Y2 

xi 

Fig. 3 

One  implication of the proposition  la  that under the 

hypothesis,  a firm of  arbitragers may  be  sectioned  Into groups 

of commodity specialists,  each group searching for profitable 

transactions by exchanging   its own commodity.    Such a division 

of effort Is bound  to discover an  arbitrage  possibility  if one 

exists. 

•in   Uie  caae  c.*   T-u^red   «.idUii.^,,   tit   interpre«     är.i^u.enl' 
ss  the  act of holding  the  commodity  from one  period of  time  to 
another,   while perhaps   Incurring storage  costs;  the  transaction 
might also  involve physical  transport of the  commodity. 
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Ttie pzx)po8ltlon remalne valid If the currency aub—network 

1B not In equilibrium, but In this case It may oooaalonally be 

better to dispense with commodity transactions altogether.  When 

we consider the situation where (2) does not hold In the currency 

sub-oetwork, then the assertion Is no longer true. 

When the rate of exchange of currencies depends to a signi- 

ficant degree on the location of the currency (e.g. the dollar 

for pound rate In New York Is not the same as the dollar for 

pound rate In London), the currency network becomes a special 

kind of commodity network. Unlike the commodity networks dis- 

cussed thus far. It has no underlying currency sub-network.  A 

diagram appropriate to the situation. Fig. 4 Indicates several 

families of currencies, each attached to a location or home 

currency. A currency can change location only by exchange with 

home currencies or by shipment.  In the latter case there may or 

may not be a cost attached to shipment. Dotted lines correspond 

to poaelbilitles of shipment. 

Xi 

Y> 

/X 

v 
X3    Xa 

Pig. ^ 
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4 STATIC LINKAR  PROORAMMINO HODKL 

It is commonly recognlMd that linear programming may be 

applied to several models of international trade [2, 5, 6, 8, 

9,   10 ]. In  this section we preaent a linear prog.'amrolng 

formulation of exchange transactions  which formally embodies 

or extends several of the previous  results.    For the  sake of 

simplicity,  we  confine our discussion   in this section   to a 

complete   (not  necessarily pure-exchange) system of currency 

exchangei  the  reader will have no difficulty in making the 

necessary modifications to allow for the possibilities of 

ooounodity exchange  or for an  incomplete system. 

We let    x. .    ^    0    be the number of units of currency    X. 

exchanged for that of currency    X,       and    c., > 0    be  the ex- 

change rate of    ***a currency for    X^'s ouxrenoy. To construct 

the model which ascertains the existence of arbitrage,  we  let 

M > 0 be an arbitrary amount of some  currency,  say    ^,s#  which 

we wish to earn  by means of currency  transactions.     The  con- 

straint equations  of  the  linear programming model are 

C'   " j!2
xiJ + J2 

0ii xn   ^   " 

and 

(5)      -*\i**    cJk xlk    ^    0 *-2,3,...,  n 

•Heretofore,  we denoted    c..  by  X-X. 
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The cost  fom being mlnialced  1«   Identically xero   In  this  form- 

ulation.     Equation  (4)  eneures  that  the net gain from  all   cur- 

rency tranaactlona  Involving X   'a   currency  le at  least M,   and 

Equation  (5)   ensures  that  the net  gains   In  the  remaining  currencies 

are non-negative  (i.e.,  no debts may be  Incurred).     Note  that 

If a  feasible  solution to  (^)  and   (5)   extots,   any positive 

aultlplt  (   > 1)   of all  the x..  also yields a  feasible  solution; 

equlvalently,   the  feasibility of  (4)   and  (5)   Is  Independent of 

M.# 

If we are merely  Interested  In locating an arbitrage 

Bchsae« only search  for a  feasible  solution to  the model.     In 

addition we may  wiah  the solution  to have  some   "optimal '  property. 

Por example,   we may desire  to  find  that  solution which  Involves 

the least  amount  of  selling of X..     In  this  case we would 

n 
(6) min ^ xi i  • 

J-2 1J 

 1  
In the special case of a pure exchange network, i.e , 

cii ci! " ^'   w* raa^ reduce the number of variables by netting 

out x.. and x...  Explicitly, let y.^ 1 < .1» denote the net 

exchange of X.'s currency for that of X's 

" ylJ " ~ X1J ^ ^l^i* 

The variable y..   la unrestricted In sign.  We note that 

c11y.1 - c. .x. - — x.., and thus the model becomes 

(Continued on next page) 
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Or there may be a fixed tranaactlon cost d.. Involved In making 

the exchange  x, . , and we may wish to find a eolation which 

mlnlmlzea the eum of the tranaactlon costs; the special case of 

d.. - 1 corresponds to minimizing the total number of transactions 

used In the solution. In this case we add to the eqaatloos 

l7'    *1J -L 71J < 0     ^j-0 or 1 

and    L >    0     la an aroltrarlly  large    number 

(B) min    1   r1Jd1J 

Constraint (7) «isures that whenever x^.    > 0 , T
1j • 1# 

If we convert (4') and (5') to equalities by adding alack 
variables r. , k - 1, 2, ..., n, and utilize the fact that the 
y..  are unconstrained in sign, we can solve for j..,  J - 2,   3,...,n, 
(or alternatively lyi+i»  J - 1, 2, ..., n-l) in ($') and eliainate 
these variables by aubstitution in (4*) yielding 

2 a*J yij ~ ^^ " " ^ > 0 

where the y1.  are the resiaining variable and a.,  their co- 
efficients.     A necessary and sufficient condition for no arbitrage 
to be possible is that all  the a.     - 0.    One can derive frosi the 
relations <*< «  " 0 either Proposition 3 or equivalent conditions 
for equllibrlu«,  depending on the y..  chosen for eliaination. 
We also note that aince we only need''to inveatigate basic solu- 
tions in a linear programing model,  part (ii)  of Proposition 3' 
can be verified froa the prograaMing model;   in fact,   if an 
arbitrage possibility exists,   it  is possible to earn M units 
of any currency in no sore than n transactions,   given the 
assumptions of the static for«ulatlon. 
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and (8) «nsures that t..    •  1 only If x.. > 0 .  The lyetem 

with (7) added Is a linear programming .r.odel Involving several 

Integer-valued variables; consequently one must resort to an 

algorithm such as that of R.I. Oomory |4] to solve the problea. 

Despite the simplicity of structure and compactness of 

constraints of (4) and {b),   the model has two main drawbacks. 

First, the arbitrage possibility Indicated by the model may 

require that the arbitrage«" Is able to execute his exchange 

transactions Instantaneously (I.e. without liquidity con- 

straint) or, alternatively, that he possess capital reserves 

In some other country than his own.  An example of such a 

solution would be an American arbitrager earning dollars by 

selling pounds for francs, francs for lire, and lire for pounds, 

and then converting his profits In pounds Into dollars.  Such 

a chain of transactions might be Impossible unless the arbitrager 

had a certain amount of foreign (pounds) funds available to 

"pump—prime" the pounds—francs—lire cycle, or were In a position 

to act Instantaneously.  Second, the modej. la ill—equipped to 

solve the problem of finding arbitrage possibilities in a few 

transactions.  Although the technique Illustrated in (U) and 

(5) can be adapted trivially to provide an upper bound constraint 

on the number of allowable transactions (number of non- sero x4«)» 

the complexity of the partial Integer linear programming problem 

is Increased considerably.  The model presented in the next 

•The arbitrager would also have the possibility of converting 
dollars into pounds, compounding profits in the pound—franc—lire 
market by repeating the arbitrage cycle, discovered by the model, 
provided the profitable set of rates existed long enough, and then 

aonvertina enough pounds back to dollars to overcome an "un- 
favorable  dollare—to-vournl» converalon rate. 
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itctlon,   although It apparently Involvaa «or« aquatlona,  ovar- 

coaai thaaa dlffloultiaa and alao hat a tpaoial  itructura ana— 

bling tha diraot ooaputation of a ooaplata solution without 

retort to an itaratlva tachnlfaa auch aa tha aluplax aathod. 

Conatquantly wa do not raooMiand tha arbitrager uaa (4)  and (5). 

Our prasant aodal la wall  aultad to aolving tha International 

adjuataiant problaa poaed in Section 1.1.2,  viz.,  given a syatea 

S which la not in equilibriu»,   to find an aquilibrixai »ystmrn S* 

ifhlch involvea changing tha laaat nuaber of ratet in S.    However 

by Propoaition 5 any conslatent aub-ayataa can be extended to 

a coaplata equilibrlua ayataa^and hence our problas reducea to 

finding the largest sub-ayataa in equilibriu«  (tha arcs which 

are to reaiain the sane auat  certainly be in equilibriu«).    Hence 

we wish to find the largest aub-ayatea auch that (l)  and (2) 

are infeaaibla.    Consider tha dual problean    oorreaponding to 

each x.. we have 

it) - '^   ^   Cij   Vj  1 0 V
k 2 

0 WLX  MVj 

where the v    are the dual  variables. 

We know froai the Dual Theoraa  [3]  that no aolution to (l) 

and (2)   exists only if either no solution or an infinite solution 

exists for (6).     But v.   • 0,   for all k,   is an obvioualy feasible 

solution to  (6);   consequently to solve our problen we want to 

find the Maximal nuaber of dual  relations which adait an infinite 

solution.     Me observe the relations  (6)  are homogeneous,  and 

thus an infinite solution exists if and only if a feasible solution 
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to the iubByetem can be found with  v. ■ 1 (because of the homo- 

geneity, the maximal subsystem is independent of the actual value 

chosen for ▼■*)•  Consider a related dual problem: 

'7>    -vi+ cij vj - hj -0       vi< > 0'    Sj ^ 0    vi ■! 

(d'       hj -s'ij   <   0 'ij •  o-1' 

and S > 0 is a large positive number 

(9)    min 2 c 

Note  that   (B)   teures  that    t -  1   if  t^.  > 0,  and   (9)   ensures 

that    ti4  > 0 only  if    ^«4  > 0.    The model solves  for a set of 

v,    (v,  •  1)  which exactly  satisfies  as many  relations   in   (b) 

as  possible;  any  relatlonsin   (7)  where    ^^i  > ^ implies  the 

original dual relation  in   (u)  is not  satisfied.    Those  relstions 

Tor which    t..  • 0,  indicate the maximal sub-network. 

 1  
In the pure exchange network, all we need are 

iV)    -  »! ♦ c^Vj + u^ - WJJ - 0   1 < }    vk > 0. Uj. 2 0,«^ 2 

v, - 1 

(8')    ulJ  + -lj -S€lj i0 1 < J,   ^j - 0,  1, 

and S is a large positive number 

(r)    »in £ c^   . 
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^. A WBTWORK FLOW METHOD 

Suppose that a potential arbitrager with resources in 

some country's currency, not necessarily "dollars", wishes 

to maximise his profit in "dollars" subject to the restriction 

that he enter into no more than  n transactions. Ms will pre- 

sent a model which solves this problem and at the same time 

solves an identical problem for initial resources in the cur- 

rency of any other country. 

We first consider the problem of maximizing profit while 

restricting the number of transactions to n or less, where n 

is the number of currencies in the system under consideration. 

In order to visualize the possibilities of buying and selling 

that «light arise, we construct a diagrta for n • 5, such as 

ist 

14 c 

r 0>>   ^ r       ^  > 

Figure 5 

The 04 i'8 *ct fta flow amplifiers or deamplifiers and 

represent the exchange rates. The problem is to maximize the 

flow entering the sink on the bottom right (i.e. the number 

of units of  X^'s currency.)  Fortunately this sort of linear 
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programing problem can b« solved in an exceedingly sljaple way, 

as has been noticed by W. Pragtr i?) and utilised by A. Chames, 

W. W. Cooper, and M. Hiller in [ij.  If the equations which 

describe "conservation" of flow for the various nodes arc 

written down in an obvious systematic way, taking the nodes 

in the first transaction, then the nodes in the second trans- 

action, etc., the matrix expressing the problem takes the form 
- •      u 

in Pig. 6.  The x.. represent the amounts of X 's money turned 

to X 's at "stage k." TTie equations on page 33A correspond 

to the example above. 

The R. i - 1, 2, ),are the available resources at X.. 

The \i.,   i - 1, 2,   ..., 12, represent the dual variables.  We 

will solve the problem by assigning values to the dual variables 

in such a way as to minimise u^R, ♦ UpRp > vi,R,.  This will 

detenniiie an optimal solution by the Dual Theorem [j] .  In 

order to solve the dual probiere, we simply assign u,^ « 1, 

ull " C2V u10 " C1V  The <lua^ «Q^tlons then require that we 

assign u_, UQ and u^ so thst 

 1  
By adding  the    flow  in—flow out"  equations  for all  nodes 

corresponding  to  the  same  currency,   we generate a set  of new 

u " kVij equations.  If the variables Y«« ■ Z xii ar6 substituted in 

these equations, the columns, or activities, will take the form 
exhibited in the static model. 
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u 2 max   (^12'c>2iu'c:5iJio)   "  fI,&x   (''c32C23'C31Ci3) 

(10)     u8  2 [Tax   (c23ui2^11'c2l"l0^   ' maX   ^C2^'C2^'C21(,1^- 

u7 2 T-ax   (c^'^^'0^-!!' ,10)  '  max   (circ 12C2VC1.V;   * 

Having aaalgned  values   to    uQ,   uH and  J7     *hlch  aatlefy   (10), 

we derive  similar equations  for    u  ,  u,   and u.     and  for    u,,   u 

and  u.    .     In   order  to minimize     ui^i  ♦ up^2  **"  u^^^'  we  evicientl>' 

must  minimise     u,,   u^  and  u,   (R    2 ^»     ^  "   ^»2»^)     an^   thus  we 

can do no  better than  to define  the dual  variables  to be  as 

small  as  possible at each step of the  procedure.     Hence  we 

detarmlne     uQ,   u^ and   D-    SO   tnat equality  holds   In   (10)   and 

continuing  In  this  way  we  assign values   to all  the djal  variables. 

We obtain  a solution  to  the  original problem  by   throwing  away  the 

set  of  coluans whose dot  product  with  the djal   variables   is  not 

exactly  xero  and solving  this   simplified  system  with  ehe   last 

three  columns. 

A  little  consideration  will show that despite  the  large site 

which the matrix might present,  e.g.   in  a case   involving 50 

•A dynamic  programming,   or functional  equation,   approach 
provides  an  alternative means   for deriving the  algorithm.     Let 

f   (X.)     denote  the maximum amount of  currency  of  country     X 

achievable  starting with a unit of currency of  country    X.   and 

making k exchange transactions.    Wa  allow for the  foregoing of an 
exchange  by defining c..   •  1   to be  the  exchange  rate of a unit of 

currency of country    X.   for  itself.     If a single  transaction  is 
pemitted, ^^  . ^ 1 . 1#2 n> 

The   recursion  relation   Is r 
WV  -"aY'-m,ro1J^(IJ),.    . 

which   Is   analogous   to   (10). y 
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currenoict, the exceedingly tltnple way of Assigning dual variables 

will keep the problem manageable. Two further important observa- 

tions should be made.  Since the method of aasigning dual varia- 

bles is independent of the currency inputst and since the value 

of the optimal solution can be computed by taking the dot product 

of the dual variables with the right hand side, it is apparent 

that the value of a dual variable indicates that extra amount 

of profit which might be realixed by introducing, at the correa— 

ponding node, one unit of the appropriate currency. As a result, 

our solution of the problem for n stages has also solved the 

problem for all intermediate stages.  When we reach any stage in 

which a dual variable is seen to exceed the corresponding rate 

of exchange, we have located a possibility of arbitrage, and 

we might use the given resources to take advantage of this pos- 

sibility for arbitrage.  However, one might prefer to consider 

more stages In the   interest of locating greater possibilities 

of profit before a decision is reached.  In adding stages, it 

is not necessary to begin again but only to start with the pre- 

viously found dual variables, to add the new relations at the 

beginning, and to continue computing the values of dual variables 

until sufficiently many are assigned.  Thus our initial decision 

to work with n stages, where n is the number of currencies, is 

not essential,  n stages, however, hsve a certain significance 

in that they represent sufficiently many stages to Indicate any 

existing arbitrage by  (11) of Proposition 3'. 
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In »ettlng up the network flow molel as In all modale of 

general exchange networks, a question arises as to exactly which 

rates should be considered aa the ratea of exchange.  An arbitrager 

might feel that the real rate of exchange should reflect the 

brokerage charge or, perhaps, the interest foregone in actually 

making a transaction.  From a mathematical point of view it 

might be dcolratle to adjust the real rates in sue*, a way that 

they indicate an arbitrage poBßibllity only in ca^es where it 

is profitable to arbitrage after coats and In thore caaeo Indicated 

the percentage of profit that could be made after broker's coats 

by a single trip around the cycle Involved.  This adjustment can 

be made by multiplying the given  ci/a by  (l-P««) *here  p.. 

is the percentage taken by the broker («suall/ 1/32 or 1/64 of 1%) 

In a transaction from  X.  to X- . 

If the arbltraglng contemplated will take an appreciable 

time, the network flow model can be constrained to deal in pre- 

sent discounted funds and, thus, to indicate arbitrage only when 

the arbitrage presents a more profitable opportunity than leaving 

one's money to collect interest for the same amount of time. 

Let  r. ,  be the percentage of interest that could be collected 

during tne time it takes to make a transaction from  X.  to  X. . 

Let the adjusted rates  cl,  be defined by 

el. --^J 1J-7TT?7J) 

It can be oasily seen that the flow has become one of present 

discounted money. 



9-2-58 
-39- 

The network flow model oan also b« used as a ■•thod for 

considering opportunltlte for spsculation.  If dlffsrsnt ratss 

of «xchanfe ar« «xpscted to ooour over tlae, these rates can be 

Introduced in the appropriate stage and the stages thought of 

as representing time periods.  A discount factor of the type 

above may be used as a first approximation to provide a "certainty 

equivalent" for the risk involved in the speculative activity. 
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